HDOS.An Infrastructure for Dynamic Optimization

Tomoaki Ukezono and Kiyofumi Tanaka
Japan Advanced Institute of Science and Technology
School of Information Science
1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
e-mail: {t-ukezo,kiyofumi}@jaist.acjp

Abstract—Recently, CPUs with an identical ISA tend to have
different architectures, different computation resources, and spe-
cial instructions. To achieve efficient program execution on such
hardware, compilers have machine-dependent code optimization.
However, software vendors cannot adopt this optimization for
software production, since the software would be widely dis-
tributed and therefore it must be executable on any machine
with the same ISA. To solve this problem, several dynamic
optimization techniques such as JAVA JIT compiler and Mi-
crosoft .NET platform are effective. The techniques can perform
the machine-dependent code optimization without source code.
However, the techniques have to exploit special environment
(VM) for program execution or special executable code (e.g.
code augmentation). In this paper, we propose an infrastructure
for dynamic optimization, HDOS The HDOS is organized with
dedicated hardware inside a CPU and operating system support.
The HDOS provides more lightweight dynamic optimization than
VM-based or interpreter-based dynamic optimization. Further-
more, the HDOS can reuse optimized binary codes at the next
execution time since it translates native binary codes into native
binary ones.

Keywords : dynamic optimization, binary translation, trace,
prefetching,

. INTRODUCTION

Recently, software development methods are increasingly
growing by using dynamic link library, dynamic class loading,
and virtual machine techniques. Furthermore, by using those
techniques, automatic program update can be limited only to
code difference, and only the difference should be distributed
across computer networks.

In such software distribution, software vendors do not
deliver source codes to clients because of easy installation.
In most case, the clients can only receive pre-compiled binary
codes of the software.

On the other hand, advances in hardware are notable as
typified by evolution of recent CPUs. Even if CPUs follow
an identical ISA (Instruction Set Architecture), the CPUs
can have different microarchitectures, different computation
resources, and special instructions on each implementation.
(i.e. modern x86 architecture family maintains upward 1386
ISA compatibility to execute older binary codes.) To achieve
efficient program execution on such CPUs, compilers pro-
vide machine-dependent code optimization. However, software
vendors cannot adopt the optimization if the products are
distributed, since the software must be executable on any
machine with the same I1SA.

In order to solve the problem, dynamic optimization tech-
niques are effective. Dynamic optimization techniques can
optimize binary codes at run time. In other words, the dynamic
optimization is client-side (not vendor-side) optimization. For
Example, JAVA JIT compiler translates byte codes to native
(optimized) binary codes at class loading time, and reduces
overheads due to virtual machine execution. However, the
trandlation cannot be applied to al parts of codes, and
therefore the remaining byte code execution is ten times or
more inherently-slow compared with native code execution.
Moreover, the JIT compilation overhead is incurred at every
class loading time even if the same class is loaded again.

In this paper, we propose a new infrastructure for dynamic
optimization, Hybrid Dynamic Optimization System (HDOS).
The HDOS aims to perform translation from native binary
codes to optimized native binary codes. The HDOS evaluates
program behavior while the program is running. One feature
is that the HDOS can reuse optimized binary codes at the next
execution time without optimization overhead. The HDOS
is organized with dedicated hardware inside a CPU and
operating system support. The dedicated hardware is User
Definable Trap (UDT). The UDT allows CPU users (not CPU
designers) to define conditions of trap generation. Software
called by the trap is optimizer routines which is provided by an
operating system. In this paper, we describe those mechanisms
with this hardware and software. In addition, we show some
performance evaluation of two examples of optimization using
the HDOS.

Il. THEHDOS

The HDOS consists of auxiliary hardware inside a CPU,
dedicated to trap functions, and trap handling software in-
stalled in an operating system. The optimizer routine is imple-
mented as a trap handler. This section details regquirements of
the interface between the auxiliary hardware and trap handler.
In this paper, we focus on how to implement the HDOS on
the Alpha[6] instruction set architecture.

A. UDT

The proposed trap hardware generates trap events as the
need arises, which is controlled by the software. The proposed
trap hardware provides a mechanism, User Definable Trap
(UDT). Figure 1 shows a block diagram of the UDT hardware.
In the figure, for example, execution of BNE generates a trap
when the branch is taken.

Reorder Buffer

Trap Definition Table
— BEQ ALWAYS

— BNE TAKEN

BACKWARD-
TAKEN

ALWAYS

—— BGT

— LDBU

— LDL ALWAYS

— LD@ ALWAYS

Commit to Register Insert by Software Interface

—®

refer to TDT

Trap Event
Driver

Store Retired RBE

RRBE Buffer

Read by Software Interface On TDT Hit, the Trap occur

Fig. 1. User Definable Trap (UDT) Hardware.

The UDT generates a trap when the reorder buffer commits
a bottom entry to the register file. The Trap Event Driver
(TED) is a main circuitry. The TED performs two tasks
simultaneously. One is to store the bottom entry into the
Retired Reorder Buffer Entry (RRBE) Buffer. The other is to
refer the Trap Definition Table (TDT) for the entry. A TDT
entry is a set of an operation code and instruction behavior.
When an entry in TDT matches the retired entry, the UDT
generates a trap. Note that the RRBE and TDT entries can be
accessed by a trap handler.

Conventional CPU design allows the trap handler to have
a control only when the CPU generates traps determined by
the CPU designer, such as exceptions, external interrupts, and
system-calls. The UDT can invoke a trap handler, when trap
conditions specified by the CPU users (not CPU designer)
are satisfied. When the UDT is used as dynamic optimization
environment, the trap handler can be implemented as an
optimizer routine. If complicated optimizations are completely
implemented as hardware, the hardware will become large
circuitry and it can easily degrade clock frequency. With this
function, it is made possible to shift the majority of binary
optimization functionalities for dynamic optimization to the
trap handler, and thereby the HDOS can offer optimization
environments with high flexibility toward sophisticated opti-
mization, without much hardware overhead.

In this paper, the UDT is used for dynamic optimization.
However, the UDT can be used for run-time debugger or
performance monitor. For example, if the TDT is set by
software debugger properly, the trap handler can have break-
point functions and watching-variable functions without code
augmentation. The UDT can provide functionalities for many
applications so that there are other ways to exploit this
mechanisms. Therefore, embedding the UDT into a CPU for
recent workstation or personal computers can be feasible.

TABLE |
BIT PATTERNS OF IDENTIFYING INSTRUCTIONS.
Instruction-identification bits | type of instructions
00 [6hit-opcode Control
01 [6hit-opcode Load/Store
10 [6bit-opcode Integer Arithmetic & Logical
11 [6bit-opcode Miscellaneous

TABLE Il
AN EXAMPLE OF BIT PATTERNS FOR BEHAVIOR OF BRANCH
INSTRUCTIONS.
bit patterns | condition of behavior

0000 0001 | not-taken

0000 0010 | taken

0000 0100 | forwad

0000 1000 | backward

0001 0000 | unconditional (Branch Type)
0010 0000 | indirect (Branch Type)

0100 0000 | return (Branch Type)

1000 0000 | reserved

B. Bit Encoding of TDT

A TDT entry consists of two fields, instruction-identification
and instruction behavior. Table | and 111 show the bit patterns
of identifying instructions and an example of use of the
instruction behavior field for branch instructions, respectively.

Instruction-identification bits are provided as an eight-bit
field. Upper two bits represent a type of instruction, and
lower six bits represent opcode of Alpha instruction set.
Basically, the TDT can represent individua instructions by
using the 6-bit opcode field. In addition, in order to reduce
the number of TDT entries to be used, it can consolidate the
same type of instructions, by using the 2-bit and setting the
opcode field to zeros, into an TDT entry. For example, the
pattern, “01”+“000000”, means all load and store instructions
invoke atrap. Instruction-behavior bits are also provided as an
eight-bit field. Individual bit position represents condition of
behavior and branch-type. The branch-type bits (unconditional,
indirect, and return) are necessary when two or more branch
instructions are consolidated into a TDT entry.

The instruction-behavior bits can be set for multiple con-
ditions. Introducing this encoding, calling trap handlers can
be finely controlled. In experiments of optimization shown
in this paper, the ability of the consolidation and multiple-
condition setting enables the optimization to be achieved by
using only two TDT-entries. This means that a few TDT-
entries are enough to provide practical optimizations, which
does not much influence either hardware size/cost or clock

frequency.
C. UDT Implementation for Alpha Architecture

In the Alpha architecture, the trap by UDT is treated just
as the system service call exception. In the Alpha, the sys-
tem service call exception is generated when the
callsys ingtructionisexecuted. Inthe UDT mechanism, any
instruction can generate the exception if condition specified
in the TDT is satisfied. The UDT calls a system service
call exception handler using the entSys (exception entry-
point) register as in the general system service call exception.

31 26 25 21 20 1615 87 0

MFRRBE
MTTDT

Opcode

MISC(0x18) Function Code 0

31 26 25 21 20 1615 87 o

Sequential Load/Store
Instructions
and SETSTRIDE

8bit Immediate
(Sign-Extend)

Opcode
MISC(0x18)

Ra Rb Function Code

Fig. 2. Formats of FRRBE and MTTDT in Alpha Instruction Set.

Simultaneously, the UDT sets the 8th bit (called UDT Field) of
Exception Summary Register to one. (In most Alpha
architecture implementations, thisbit position is reserved.) The
system service call exception handler checksthe
UDT Field beforeit starts general system service call handling.
If the UDT field is found to be one, it detects the UDT trap
request, and jumps to optimizer routine.

Traps by UDT should occur only when user codes are
running, since the traps are for optimization of the user codes,
and kernel codes including trap handlers are out of the scope.
In the UDT implementation on Alpha architecture, if the
processor is running in a kernel mode (status register’s field,
PS<mode >, is zero), the UDT does not generate any trap even
when a matched TDT entry is found.

D. Software Interface for UDT

New instructions, MFRRBE (Move From RRBE) and MTTDT
(Move To TDT) are added to the Alpha instruction set to
access the RRBE buffer and TDT entries. The MFRRBE
instruction transfers a data from the RRBE buffer to a general
purpose register. The MTTDT instruction transfers a data from
a general purpose register to a TDT entry. The Both instruc-
tions are privileged instructions. The format of MFRRBE and
MTTDT are illustrated in figure 2. These instructions belong
to Miscellaneous Instructions in the Alpha

Using MFRRBE, the trap handler can analyze behavior of the
instruction that generated the trap. Using MTTDT, an operating
system sets conditions of UDT traps in the TDT.

I1l. EXAMPLES OF OPTIMIZATION

In this section, we introduce two optimization techniques
using the HDOS. One is software trace optimization, the other
is sequential data prefetching optimization. The following
subsections describes them in detail.

A. Software Trace Optimization

One of applications of the HDOS is the software trace opti-
mization. This optimization improves efficiency of instruction
fetching in superscalar processors. Most of integer programs
have complex control structure. In such program execution,
performance is degraded when taken branch causes inefficient
instruction fetching. To avoid this inefficient instruction fetch-
ing, hardware approaches such as branch prediction and trace
cache are widely known. One the other hand, this optimization
can avoid this inefficient instruction fetching by software
approach. It generates software traces and adds them to the
origina binary code, where frequent taken branch is trandated
to not-taken branch.

Fig. 3. Weighted digraph.

1) Loop Detection: This optimization generates software
traces. However, it is difficult to generate all inherent traces
in the program, since the code size would be too large.
Therefore, it isimportant to generate only effective traces that
are frequently executed (hot-traces/hot-spots). Loop bodies are
one of the examples. At first, the optimization finds loop
structure. The HDOS creates TDT entries to generate traps
when backward branch is performed. The UDT mechanism
calls an optimizer routine every time the CPU executes a
backward branch instruction in this TDT configuration. The
optimizer routine reads the RRBE, adds the instruction address
(PC vaue) to a list for the loop detection if the branch is
not found in the list, and records (increments) the number
of executions of the branch instruction in the list. (Either
subroutine calls such as JSR (Jump to Sub-Routine) or RET
(Return from subroutine) are not added to the list, since they
are not related to loop structure. The distinction between such
branches and other branches can be done by TDT condition
setting described in the section .) When the number of execu-
tions exceeds a given threshold, the corresponding backward
branch is identified as a loop-back branch instruction.

2) Path Profiling: After a loop-back branch is identified,
the TDT configuration is changed for the UDT to generate
traps whenever branch instructions are executed. The optimizer
routine repeats the anaysis of al branches inside the loop
structure until the specified number of executions of the loop-
back branch instruction is performed.

During the analysis, the optimization generates a weighted
digraph for branching direction. Figure 3 illustrates the
weighted digraph.

The figure illustrates the weighted digraph after executing
ten loop backs. In the figure, nodes (A to F) are depicted for

branch instructions inside a loop body, and aloop back branch
instruction is represented by H. Edges from a node indicate
branch direction. Each edge is accompanied by a direction,
t(taken) or nt(not-taken). The parenthetic numbers denoted
near each edge are weight, that is, the number of execution
times for the direction.

In the beginning of profiling, thereis only an H node. Then,
the other nodes are added and the edges are weighted by
the optimizer when it is invoked by the UDT. The optimizer
searches the digraph for PC of the branch instruction. If hit in
the digraph, the number of execution times for the direction is
incremented. Otherwise, a new node is created and connected
to the previous node. This analysis was continued until the
number of execution times of the loop-back edge from the H
node became ten.

After the analysisisfinished, the optimizer selects a path for
generating a software trace by pursuing the weighted digraph
from A to H. When an edge have to be selected between taken
and not taken, the selection criteria is edge's weight. In the
figure, a path, A-B-D-H is selected and the branches and the
directions in the path (branch list) are used when generating
a software trace, described in the following subsection.

3) Generating a Software Trace: Using the branch list ob-
tained in the path profiling, the optimizer generates a software
trace. The generation algorithm is as follows.

1) Extract basic blocks from the branch list and combine
the basic blocks,

2) Invert branch condition if the branch was a taken branch,

3) Decide alocation (in memory) where the trace is placed,

4) Resolve relocation problems due to PC-relative
branches,

5) Add unconditional branches to the trace to return to the
original code, and

6) Link the trace with the origina code by inserting an
unconditional branch into the origina code.

B. Sequential Data Prefetching Optimization

Another application of HDOS is optimization for sequential
data prefetching. Data prefetch techniques make CPU issue a
non-blocking read request before the memory block is actually
used. The memory block read from main memory is loaded
into the cache in the background of program execution. If the
memory block arrives at the cache memory before the block is
actually used, the data prefetch can eliminate memory access
latency. In this paper, we propose specia instructions for
sequential prefetching and an algorithm for memory reference
analysis.

The Alphainstruction set, originally, provides non-blocking
prefetch functions by using the instructions, LDL, LDS, and
LDQ, with adestination register R31 or F31 (zero registers). In
addition, the FETCHXx instruction is generally used to achieve
a wide-area prefetch beyond the cache block size. If such
prefetch instructions are inserted into a program binary code
by the HDOS, target addresses of branch instructions must
be changed, which leads to large overheads. To solve this
problem, we add new instructions for sequential prefetching,

Data Segment
Cache Miss

Program Code

LDQU SEQ POS
BNE

]

Hardware Register
Stride
Length

Cache Miss

Cache Miss

Cretio e set by software

interface

Cache Miss

Cache Miss

PREFETCH®

Prefetch Hit

Prefetch Hit

Prefetch Hit

Fig. 4. An example of behavior of SLSI.

sequential load or store instructions (SLS), to the Alpha
instruction set. The instructions have two functions; one is
the same as by load or store, and the other is a sequential
prefetch function. The two functions are redlized in a single
instruction. Therefore, the optimization has only to replace a
load or store instruction in a program code with the SLSI. The
SL SIs can be provided by utilizing miscellaneous instructions
in Alpha ISA. Figure 4 illustrates run-time behavior of SLSIs.

In the figure, LDQU_SEQ_POS is one of SLSIs. This
instruction executes the following three steps. The first step
is to execute the same function as LDQU. The second is to
calculate a prefetch address by adding a constant value to
the virtua address accessed in the first step. The third is to
issue a prefetch using the calculated address. The constant
value used in the second step is given by the “Stride Length”
register. The stride length is represented by the number of
cache blocks. In Figure 4, LDQU_SEQ_POS issues the first
prefetch while accessing the first memory block. Then, the
second prefetch is issued when the LDQU_SEQ_POS is
executed for the second memory block. This is the case
in the later execution. Consequently, the LDQU_SEQ_POS
constantly prefetches a block ahead by the stride length. In
this example, the LDQU_SEQ_POS causes six cache misses.
After the sixth miss occurs, the LDQU_SEQ_POS does not
generate a cache miss.

1) Memory Reference Analysis and Optimization: Thereare
three steps for the analysis and optimization of a program;
Step 1 isfor loop detection, which is required since sequential
accesses by load or store instructions frequently appear in a
loop structure. This step is the same as in the software trace
optimization. Therefore, this step is not described again.

Step 2 is to create a memory access history table that
holds statistics of memory accesses during the loop execution,
examine the table to find load and store instructions that
generate sequential accesses, and then list candidates for
instructions that could be replaced by SLSI. Step 3, the last
step, selects instructions that should be actualy replaced out
of the candidates and modifies the binary code. The following
subsections describe the three steps.

2) Sep 2: Creating and Examining Memory Access History
Table: After a loop-back branch is identified, a condition is
added to the TDT so that the UDT generates traps when load or

PC Stride Variable Stride Length Last Address Execute
0x12000 0 0 0 0x200000 7
0x12100 7 0 0 0x210000 30
0x12200 7 o 4 0x220004 100
0x12300 0 7 0 0x230018 50

Fig. 5. The history table of memory references.

store instructions are executed. The optimizer routine repeats
the analysis of memory accesses until the specified number
of execution of the loop-back branch instruction is performed.
In this paper, this job is referred to as an observation phase.
Figure 5 illustrates a history table of memory accesses created
by the optimizer routine.

The history table in the figure consists of, from left to right,
the PC value for the load or store instructions, binary value of
a flag Sride indicating occurrence of stride accesses, binary
value of another flag Variable indicating occurrence of non-
stride (=irregular) pattern accesses, the Sride Length, the Last
Address indicating the address the instruction accesses last
time, and Execute that is the number of executions of the
instruction.

When aUDT trap occurs, the optimizer routine searches the
history table by using the PC value corresponding to the UDT
trap occurrence, found in the RRBE register. If a matching
entry is not found, the optimizer routine creates a new entry
with initial values for Stride, Variable, and Stride Length, as
shown in the first row. Otherwise, it updates the history table
by the following four steps.

1) Subtract the Last Address from the address referenced
by the load or store instruction that caused the trap. Then
the Stride Length (SL) is obtained.

2) The obtained S is compared with the old SL ; if
Variable is 0 and the obtained S_ is equa to the old
S, then Stride is set to 1, Variable isto O, and the
S is updated by the obtained value. Otherwise, Stride
is set to 0 and Variable isto 1.

3) The Last Address is replaced with the new referenced
address.

4) Execution is incremented.

The Optimizer routine repeats the steps of (1) to (4) until
the end of the observation phase is reached.

After the observation phase, the optimizer routine walks
thorough the history table, and finds load or store instruc-
tions that generated sequential accesses. The load or store
instructions that performed sequential referencing during the
observation phase have the Sride being 1 and the Stride
Length being not 0, as shown in the third row of Figure
5.

3) Sep 3: Modifying a Binary Code: The optimizer routine
replaces the instructions found in the step 2 by SLSIs. If,
however, there are too many candidates for the instruction
replacement in a loop, replacing al the candidates may lead

TABLE 111
SIMULATION PARAMETERS FOR M1 PS64 SIMULATOR

issue width 4
branch prediction | ideal
ruu size infinite

to unacceptable performance degradation; When a group of
SLSIs prefetch more data sets than the number of cache ways
(associativity), there is a possibility of cache index conflicts
between the prefetch requests, and in the worst-case scenario,
it puts the cache at risk for thrashing.

To avoid this problem, the candidates for the instruction
replacement are sorted in decreasing order of product of Sride
Length and Execute, and the top IV candidates are replaced
with SLSIs, where NV is the number of cache ways.

IV. PERFORMANCE EVALUATION

We evaluate performance of two types of the optimized
binary codes, software trace optimization and sequentia
prefetching optimization, compared with non-optimized binary
codes by simulation.

A. Smulation Methodology

We used two simulators to evaluate two types of optimiza-
tions, respectively. The performance of fetching in software
trace optimization is evaluated by the MIPS 64 ISA super-
scalar CPU simulator we devel oped. The simulator focuses on
instruction fetching. The simulation parameters are shown in
Table Il1.

The sequential prefetching optimization is evaluated by
SimpleScalar 3.0 with Alpha ISA [7]. The simulator evaluates
total performance of a program execution including cache
miss ratio and 1PC. We modified the SimpleScalar to model a
memory system with prefetch function, and to add SL SIsto the
Alphainstruction set. The SimpleScalar simulation parameters
are shown in Table IV.

In both simulation models, the optimizer routine were
directly implemented by simulator codes.

We used eight applications form SPEC95 INT benchmark
suite [8] to evaluate the software trace optimization, and ten
applications from SPEC2000 INT benchmark suite [8] to
evaluate the sequential prefetching optimization. (The pre-
compiled binaries of the SPEC2000 available from [9] were
used in the experiment.) All benchmark programs were run
until two-billion instructions were committed.

B. Smulation Results of Software Trace Optimization

Figure 7 shows instruction fetching throughput.

Ingo, m88ksim, gcc, compress, ijpeg and perl, the
instruction fetching throughput was improved. However, the
11 and vortex got worse than non-optimized binary code.

The degradation happens when target addresses of most
branches are variable, that is register jumps are often used, or
directions of conditional branches are impartial. The results
show the software trace optimization is effective in six of the
eight SPEC95 INT applications.

TABLE IV
SIMULATION PARAMETERS FOR SIMPLESCALAR

issue width 4

ruu size 16

di1 size 64KB (4 WAY/32 byte block)
di1 latency 1 cycle

i1 size 64KB (4 WAY/32 byte block)
il1 latency 1 cycle

ul2 size 1IMB (8 WAY/64 byte block)
ul2 latency 6 cycles

memory access latency [first]:120 [inter]:12 cycles
memory access bus width | 8 bytes

3.6

35
3.4
33 |

3.2 O non-opeimized
3.1 M optimized

29
2.8

2.7 =

oa Cal &
& ¥V &P T
S K v
Fig. 6. Instruction fetching throughput for SPEC95 INT.

Onormal
0.3 |
Moptimized

< & & 943 %
o & & P & & 9 o
& ! s A N & K
> a° (34 & P o & o hd by
3 <) ~ 4 o < o © ©
~ RN ” £ a8
~ ~ <

Fig. 7. L2 Cache Miss Rates of SPEC2000 INT.

C. Smulation Results of Sequential Prefetching Optimization

Figure 7 shows cache-miss rates through the program exe-
cution. The cache misses in these results do not include misses
on blocks for which a prefetch had been already issued.

For al the INT applications, the L2 cache-miss rate was
decreased. Especiadly, in gzip and parser, the rate was
significantly decreased. The gzip was most improved, by 53
percent, in al the INT applications. Inthe vpr, mcf, crafty
and eon, the L2 cache-miss rate was dlightly decreased.

Figure 8 shows IPC performance through the program
execution. In five applications, gzip, parser, perlbmk,
gap, and bzip2, the IPC performance was increased.

Especidly, the gz ip was most improved, by 28 percent, in
al the INT applications. This is because the performance of

Onormal
M optimized

Fig. 8. IPCs of SPEC2000 INT.

the gzip depends heavily on accessing to array data structure.
In addition, there is non-negligible performance improvement
for the parser, gap and bzip2. However, in vpr, mct,
crafty, eon, and twolf, thereis no performance improve-
ment, which means the sequential prefetching optimization
is not effective in those applications. The results show the
sequential prefetching optimization is effective in five of ten
SPEC2000 INT applicetions.

V. RELATED WORK

In this section, we describe the other dynamic optimization
environments.

The recently and relevant work is a data prefetch system that
was proposed by Jean et a. [5]. The system does not require
any additional hardware such as performance counters or spe-
cific hardware. Rather, it only requires software modification
of target binaries in advance of execution. For this reason, the
system can be implemented on any instruction set architecture
which has prefetch instructions. An optimizer routine which
monitors the program behavior and modifies a target binary is
implemented by a signal handler and a thread that is invoked
periodically.

There are two advantages of our system over the above
system. One is that our system can use precise informations
such as virtual addresses actually issued by using the specific
hardware (UDT). The other is ssimple binary modification by
introducing new instructions dedicated to sequential accesses
(SLSl). Using the SLSIs to modify a binary code, overheads
of fetching conventional prefetch instructions that would be
added to the code can be avoided.

There is a disadvantage of our system. Our system requires
modifications to conventional hardware and operating system
software. However, the UDT hardware can be used for not only
the dynamic optimization but also the other purposes such as
performance analysis of programs. For example, the hardware
can be used for the same purpose as the PMU (Performance
Monitoring Unit) [3] system which is implemented on Intel
[tanium2.

Dynamo[1] and DynamoRIO[2] are a transparent dynamic
optimization environment. They operate on unmodified native
binaries and require no special hardware or operating system
support. Making a binary code run on the interpreter, the

Dynamo can obtain informations to optimize the binary code
and timing for optimization. Then, using the informations,
the Dynamo generates hot traces that would be frequently
executed and therefore can reduce cache misses while the
hot traces are executed. However, the overhead of executing
the origina code on the interpreter can diminish the effect
of the optimization. The DynamoRIO is a framework for
dynamic code modification systems that are based on Dynamo
and can be used to profile and optimize programs. UMI[4]
is a lightweight dynamic optimization system built on the
DynamoRIO. The UMI and DynamoRIO can bring the same
benefits as Dynamo without heavy overhead. There is our
advantage over their works. They have to use the dynamic
optimization environment every time a program is executed,
which incurs the overhead constantly. In our system, on the
other hand, the optimization overhead is incurred only at the
first execution, since our system directly modifies binary code
and can easily disable the dynamic optimization functions at
the second run-time or later.

VI. CONCLUSION

In this paper, we proposed a new dynamic optimization
system which can implement several optimization algorithms.
This system is called HDOS. The HDOS is organized by
simpletrap hardware whichis called UDT and atrap handler, a
part of operating system codes, which is used as the optimizer
routine, and creates an optimized binary code. As examples
of applications of the HDOS, we showed two binary code
optimization algorithms. One is software trace optimization,
and the other is sequential prefetching optimization. The soft-
ware trace optimization can improve efficiency of instruction
fetching. The sequentia prefetching optimization can reduce
cache misses in sequential memory accesses.

The two optimization algorithms were evalueated in simu-
lation. The simulation results of SPEC95 benchmarks showed
that the software trace optimization was effective in six of
eight applications. The simulation results of SPEC2000 bench-
marks showed that the sequential prefetching optimization
was effective in five of ten applications. In the other five
applications, the sequentia prefetching optimization did not
much degrade the performance.

REFERENCES

[1] V.Baa, E.Duesterwald, and S..Banerjia. Dynamo: a transparent dynamic
optimization system. ACM SIGPLAN Notices, 35(5):1-12,2000.

[2] D.Bruening, T.Garnett, and S.Amarasinghe. An infrastructure for adaptive
dynamic optimization. In international Symposium on Code Generation
and Optimization 2003, Mar 2003.

[3] Intel Itanium 2 Processor Reference Man-
ual for Software Devel opment and Optimization.

http://downl oad.intel.com/design/Itanium2/manual 25111003 pdf

[4] Q.Zhao, R.Rabbah, S.Amarasinghe, L.Rudolph, and W.-FWong. Ubiqui-
tous memory introspection. In international Symposium on Code Gener-
ation and Optimization 2007, Washington, DC, USA, March 2007.

[5] Jean Christophe Beyler and Philippe Clauss. Performance driven data
cache prefetching in a dynamic software optimization system. Interna-
tional Conference on Supercomputing archive Proceedings of the 21st
annual international conference on Supercomputing. Pages: 202 - 209.

[6] Alpha Architecture Reference Manual, THIRD EDITION. ALPHA AR-
CHITECTURE COMMITTEE, Digital Press, ISBN 1-55558-202-8.

[7] D.Burger, T.Austin, and S.Bennett. Evaluating future microprocessors:
The simplescalar toolset. Tech Report CSTR-96-1308, Univ. of Wiscon-
sin, CS Dept., July 1996.

[8] http://www.spec.org

[9] http://ww.simplescalar.com

