1PIC: A Hardware Mechanism for Faster Interrupt
Handling on Embedded Virtualizations

Tomoaki Ukezono
School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)
1-1, Asahidai, Nomi, Ishikawa, Japan
Email: t-ukezo@jaist.ac.jp

Abstract—Our final goal is to implement entirety of the
embedded virtualizations as hardware. The hardware VMM
(called H-VMM in this paper) can eliminate software overheads
of virtualizations. Therefore, the H-VMM can exploit virtualiza-
tions to embedded systems which are nervous about real-time
execution such as automotive systems, control of airplanes and
medical devices.This paper especially focuses on overheads which
are caused by interrupt handling, and propose novel hardware
mechanism to eliminate the overheads.

In our first step, we are focusing on I/O handling by
virtualizations. Figurel shows system model of the VMM
controls and proposed method. The figure shows three types of
implementation for I/O handling. The Virtualized I/O (left side
of the figure) is typically used for general-purpose (desktop or
laptop computer) system and can handle I/O devices which are
shared between VMs. This implementation is the most flexible.
However, it has unrealistic overheads for embedded system
due to the device emulation. The Direct I/O (center of the
figure) is widely used for embedded system or HPC system.
Instead of device emulation, VMs must control individual I/O
devices by physical driver directly. The True Direct I/O (right
side of the figure) is our proposed architecture. In the True
Direct I/O, two dedicated hardware with action comparable
to VMM processing by the Direct I/O are implemented.
Therefore, there is no interference by software whatsoever
when VMs control I/O devices. The I/O handling by VMMs
consists of two types of processing. One is I/O port handling.
I/O port handling is required when the I/O port map of new
platform is different from old platform. Our previous work[1]
showed I/O performance improvement by 10% to 14% by
implementing only address translation of I/O port map. The
other is PIC Control. VMMs must know which interrupt
from devices is supported by which VM and configure PIC
(Programmable Interrupt Controller) appropriately. Naturally,
the PIC control has software overhead. However, our previous
work has no mention of the PIC control. In this paper, we focus
on the PIC control and propose the intelligent PIC (named
iPIC) which can act as a substitute for PIC control by VMMs.

Common PICs can configure only mask of interrupt. There-
fore, VMMSs must check current running VM and call ap-
propriate interrupt handler on each interrupt, since multiple
VMs are running on the VMM. Figure2 shows our proposed
iPIC hardware. The iPIC conform hardware composition to
OpenRISC 1000 architecture[2], since implantation of the

True Direct I/0

Virtualized 1/0
(Proposed)

Direct I/0

VM VM VM

Guest
Driver

Device Emulation

1/0 Port
VMM Handling
PIC Control

.
I Interconnect

Fig. 1.

Mask
Function

Physical
Driver

Physical
Driver

1/0 Port
Control

1/0 Port
Control

Interrupt Interrupt

HW Addr.
Trans.

The True Direct I/O Architecture.

iPIC Core
VM ID ADDRESS

IRQ[31:0]

INT EXCEPTION

ADDRESS TO HANDLER

Fig. 2.

Mechanism of iPIC.

iPIC depends strongly on individual micro-architecture. The
PICMR (PIC Mask Register), Mask Function and PICSR (PIC
Status Register) are already defined by OpenRISC 1000. The
VM ID and iPIC Core are additional functions by H-VMM.
VM ID represents identifier of current running VM. The iPIC
Core has an address table. The table is indexed by IRQ
(Interrupt ReQuest) number. When IRQ is received from Mask
Function, iPIC Core compare VM ID register and VM ID field
of the address table. If the VM ID filed is matched, corre-
sponding ADDRESS field is loaded and set to the program
counter. At the same time, signal of external interrupt (INT
EXCEPTION) is supplied to integer unit. Otherwise, the iPIC
does not assert INT EXCEPTION. In other words, the iPIC
behave like additional Mask Function for virtualizations. By
introducing this simple hardware, overheads on each interrupt
can be eliminated.
REFERENCES

[1] T. Ukezono and K. Araki, “Performance Evaluation for Hardware Trans-
lation of I/O Address Map in Embedded Virtualization”, Proc. of IPSJ
Embedded System Symposium 2013, pp.131-139, 2013. (Japanese)

[2] “OpenRISC Architecture Manual”, OPEN-ORES.ORG, in
http://www.da.isy.liu.se/courses/tsead44/OpenRISC/openrisc arch3.pdf,
2003.



